Theorem Let X_i denote the number of times that the outcome r_i occurs, i = 1, 2, ..., t, in a series of n independent trials, where $p_i = P(r_i)$. Then the vector $(X_1, X_2, ..., X_t)$ has a multinomial distribution and

$$p_{X_1,X_2,\dots,X_t}(k_1,k_2,\dots,k_t) = P(X_1 = k_1, X_2 = k_2,\dots,X_t = k_t)$$
$$= \frac{n!}{k_1!k_2!\cdots k_t!} p_1^{k_1} p_2^{k_2} \cdots p_t^{k_t},$$
where $k_i = 0, 1, \dots, n; \ i = 1, 2, \dots, t; \ \sum_{i=1}^t k_i = n$

Proof Any particular sequence of $k_1 r_1$'s, $k_2 r_2$'s, ... and $k_t r_t$'s has probability $p_1^{k_1} p_2^{k_2} \cdots p_t^{k_t}$. Moreover, the total number of outcome sequences that will generate the values $(k_1, k_2, ..., k_t)$ is the number of ways to permute *n* objects, k_1 of one type, k_2 of second type, ..., and k_t of a *t*th type. By a Theorem you learned in Probability Theory that number is $\frac{n!}{k_1!k_2!\cdots k_t!}$.